American Society of Civil Engineers

Seismic Design Criteria for Structures, Systems, and Components in Nuclear Facilities

This document uses both the International System of Units (SI) and customary units.

Developed by
Working Group for Seismic Design Criteria for Nuclear Facilities
Dynamic Analysis of Nuclear Structures Subcommittee
Nuclear Standards Committee

Published by the American Society of Civil Engineers
CONTENTS

List of Figures
List of Tables
Foreword
Acknowledgments
Acronyms/Notation
Definitions

Standard

1.0 Introduction
 1.1 Overview of the Seismic Design Criteria
 1.2 Use of ASCE Standard 43-05 with Other Codes and Standards
 1.3 Alternative Methods to Meet Intent of this Standard

2.0 Earthquake Ground Motion
 2.1 Seismic Hazard Evaluation
 2.2 Development of DBE Ground Motion
 2.2.1 Horizontal Ground Motion
 2.2.2 Vertical Ground Motion
 2.3 Method to Define the Design Response Spectra at Various Depths in the Site Profile
 2.4 Criteria for Developing Synthetic or Modified Recorded Time Histories

3.0 Evaluation of Seismic Demand
 3.1 Introduction
 3.2 Linear Analysis
 3.2.1 Linear Equivalent-Static Analysis
 3.2.2 Linear Dynamic Analysis
 3.3 Nonlinear Analysis
 3.3.1 Nonlinear Static Analysis
 3.3.2 Nonlinear Dynamic Analysis
 3.4 Modeling and Input Parameters
 3.4.1 Effective Stiffness of Reinforced Concrete Members
 3.4.2 Mass
 3.4.3 Damping Values for SSCs

4.0 Evaluation of Structural Capacity
 4.1 Structural Systems
 4.1.1 Definitions
 4.1.2 Acceptable Structural Systems for Nuclear Facilities
 4.1.3 Prohibited Structural Systems

Seismic Design Criteria for Structures, Systems, and Components in Nuclear Facilities, ASCE/SEI 43-05

American Society of Civil Engineers, 1801 Alexander Bell Drive, Reston, VA 20191 USA
Phone: 1-800-548-ASCE (2723) or 1-703-295-6300
Fax: 1-703-295-6211
Internet: www.pubs.asce.org
4.2 Structural Capacities
 4.2.1 General
 4.2.2 Reinforced Concrete
 4.2.3 Capacity of Low-Rise Concrete Shear Walls
 4.2.4 Structural Steel
 4.2.5 Reinforced Masonry

4.3 Deformation and Rotation Capacities

5.0 Load Combinations and Acceptance Criteria for Structures
 5.1 Load Combinations
 5.1.1 General
 5.1.2 Seismic Loading Combinations
 5.2 Acceptance Criteria
 5.2.1 General
 5.2.2 Strength Acceptance Criteria
 5.2.3 Deformation Acceptance Criteria

6.0 Ductile Detailing Requirements
 6.1 Steel Structures
 6.1.1 Moment Frames
 6.1.2 Braced Frames
 6.2 Reinforced Concrete
 6.2.1 General
 6.2.2 Slab/Wall Moment Frame Systems
 6.3 Anchorage

7.0 Special Considerations
 7.1 Rocking and Sliding of Unanchored Rigid Bodies
 7.2 Building Sliding and Overturning
 7.2.1 Building Sliding
 7.2.2 Building Overturning
 7.3 Seismic Separation
 7.4 Seismic Design Considerations for Foundation Elements
 7.4.1 Linear Analyses
 7.4.2 Nonlinear Analyses
 7.4.3 Special Provisions for Foundation Components
 7.4.4 Liquefaction Potential and Soil Strength Loss
 7.5 Unreinforced Masonry Used as Movable Partitions, Barriers, and Radiation Shielding
 7.6 Provisions for Construction Effects
8.0 Equipment and Distribution Systems
 8.1 Introduction
 8.2 Qualification by Analysis
 8.2.1 Seismic Analysis Methods
 8.2.2 Demand for Qualification by Analysis
 8.2.3 Capacity Using Qualification by Analysis
 8.2.4 Acceptance Criteria and Documentation for Qualification by Analysis
 8.3 Qualification by Testing and Experience Data
 8.3.1 Tests and Experience Methods
 8.3.2 Demand for Qualification by Tests and Experience Data
 8.3.3 Capacity Defined for Seismic Qualification by Test and Experience Data
 8.3.4 Acceptance Criteria and Documentation for Qualification by Tests and Experience Data

9.0 Seismic Quality Provisions
 9.1 Design Verification and Independent Peer Review
 9.1.1 Seismic Design Verification
 9.1.2 Independent Seismic Peer Review
 9.2 Structural Observation, Inspection, and Testing
 9.2.1 Structural Observations
 9.2.2 Continuous and Periodic Inspections
 9.2.3 Testing
 9.3 Quality Assurance
 9.3.1 Design Basis Documents
 9.3.2 Design Procedures

Appendix A
A.0 Approximate Methods for Sliding and Rocking of an Unanchored Rigid Body
 A.1 Approximate Method for Sliding of an Unanchored Rigid Body
 A.2 Approximate Method for Rocking of an Unanchored Rigid Body

Appendix B
B.0 Commentary on and Examples of Approximate Methods for Sliding and Rocking of an Unanchored Rigid Body
 B.1 Approximate Method for Sliding of Unanchored Rigid Body
 B.2 Approximate Method for Rocking of Unanchored Rigid Body
 B.3 Example Problems: Rigid Body Rocking and Sliding
 B.3.1 Rigid Body Rocking Example
 B.3.2 Rigid Body Sliding Example

References for Appendix B.0

Commentary
C1.0 Introduction
C1.1 Overview of the Seismic Design Criteria
C1.2 Use of ASCE Standard 43-05 with Other Codes and Standards
C1.3 Alternative Methods to Meet Intent of this Standard
 C1.3.1 References for Section C1.0

C2.0 Earthquake Ground Motion
 C2.2 Development of Design Basis Earthquake Ground Motion
 C2.2.1 Horizontal Ground Motions
 C2.2.2 Vertical Ground Motions
 C2.3 Method to Define the Design Response Spectra at Various Depths in the Site Profile
 C2.4 Criteria for Developing Synthetic or Modified Recorded Time Histories
 References for Section C2.0

C3.0 Evaluation of Seismic Demand
 C3.3 Nonlinear Analysis
 C3.4 Modeling and Input Parameters
 C3.4.1 Effective Stiffness of Reinforced Concrete Members
 C3.4.3 Damping Values for SSCs
 References for Section C3.0

C4.0 Evaluation of Structural Capacity
 C4.2 Structural Capacities
 C4.2.3 Capacity of Low-Rise Concrete Shear Walls
 References for Section C4.0

C5.0 Load Combinations and Acceptance Criteria for Structures
 C5.1 Load Combinations
 C5.1.1 General
 C5.2 Acceptance Criteria
 References for Section C5.0

C6.0 Ductile Detailing Requirements
 C6.2.2 Slab/Wall Moment Frame Systems

C7.0 Special Considerations
 C7.1 Rocking and Sliding of Unanchored Rigid Bodies
 C7.2 Building Sliding and Overturning
 C7.3 Seismic Separation
 C7.5 Unreinforced Masonry Used as Movable Partitions, Barriers, and Radiation Shielding
 C7.6 Provisions for Construction Effects
 References for Section C7.0

References for Section C1.0
References for Section C2.0
References for Section C3.0
References for Section C4.0
References for Section C5.0
References for Section C6.0
References for Section C7.0
C8.0 Equipment and Distribution Systems

References for Section C8.0

C9.0 Seismic Quality Provisions

 C9.1 Design Verification and Independent Peer Review
 C9.2 Structural Observation, Inspection, and Testing
 C9.3 Quality Assurance

References for Section C9.0